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of the continuous function y—a;(x). Then V; is also closed in the subset 7 '(U) of
U x C. It follows that V, is open in 7~ '(U), because it is the complement of the
closed set V,U...UV,. Since U is open in C, its inverse image # '(U) is open in S.
Thus V, is open in an open subset of S, which shows that V, is open in § too. Simi-
larly, V; is open for each i. o

We will look at these loci again in Chapter 13.

In helping geometry, modern algebra is helping itself above all.

Oscar Zariski

EXERCISES

1. Definition of a Ring

1.

2.

3.
4.
5,
6.

7.

8.

10.

Prove the following identities in an arbitrary ring R.

@ 0a=0 (b) ~a=(-Da (¢) (~a)b = —~(ab)

Describe explicitly the smallest subring of the complex numbers which contains the real

cube root of 2.

Let & = 3i. Prove that the elements of Z[a] form a dense subset of the complex plane.

Prove that 7 + V2 and V3 + V-5 are algebraic numbers.

rove that for all integers n, cos(27/n) is an algebraic number.

Let Qfa, B] denote the smallest subring of C containing Q, & = V2, and B = V3,

and let y = a + B. Prove that Qa, 8] = Qfy].

Let S be a subring of R which is a discrete set in the sense of Chapter 5 (4.3). Prove that

S=4Z.

In each case, decide whether or not § is a subring of R.

(@) S is the set of all rational numbers of the form a/b, where b is not divisible by 3, and
R =Q.

(b) S is the set of functions which are linear combinations of the functions
{1,cos nt,sin nt | n € Z}, and R is the set of all functions R—— R.

{c) (not commutative) S is the set of real matrices of the form [_Z 2], and R is the set

of all real 2 X 2 matrices.

.JIn each case, decide whether the given structure forms a ring. If it is not a ring, deter-

mine which of the ring axioms hold and which fail:

(a) U is an arbitrary set, and R is the set of subsets of U. Addition and multiplication of
elements of R are defined by therules A + B= A UBandA -8B =A N B.

(b) U is an arbitrary set, and R is the set of subsets of U. Addition and multiplication of
elements of R are defined by the rules A+ B = (A UB) — (A NB) and
A-B=AnNBA.

(¢) R is the set of continuous functions R—— R. Addition and multiplication are
defined by the rules [f + gl(x) = f(x) + g(x) and [fog](x) = f(g(x)).

Determine all rings which contain the zero ring as a subring.
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11.

12,
13,

14.
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Describe the group of units in each ring.
(@) Z/12Z (b) Z)1Z (c) Z/8Z (d) Z/nZ
Prove that the units in the ring of Gauss integers are {+1, =i}.

An element x of aring R is called nilpotent if some power of x is zero. Prove that if x is
nilpotent, then 1 + x is a unit in R.

Prove that the product set R X R’ of two rings is a ring with component-wise addition
and multiplication:

(a,a’) + (b,b") = (a+ b,a’ + b") and (a,a')(b,b') = (ab,a'b").
This ring is called the product ring.

2. Formal Construction of Integers and Polynomials

*5,

7.

Prove that every natural number n except 1 has the form m' for some natural number m.

. Prove the following laws for the natural numbers.

(a) the commutative law for addition

(b) the associative law for multiplication

(c) the distributive law

(d) the cancellation law for addition: if a + b = a + ¢, then b = ¢

(e) the cancellation law for multiplication: if ab = ac, then b = ¢

The relation < on N can be defined by the rule a < bif b = a + n for some n. Assume
that the elementary properties of addition have been proved.

(a) Provethatifa < b,thena + n < b + nfor all n.

(b) Prove that the relation < is transitive,

(¢) Prove that if a, b are natural numbers, then precisely one of the following holds:

a<ba=bb<a.
(d) Prove thatif n # 1, then a < an.

. Prove the principle of complete induction: Let S be a subset of N with the following

property: If # is a natural number such that m € § for every m < n, then n € §. Then
S =N.

Define the set Z of all integers, using two copies of N and an element representing zero,
define addition and multiplication, and derive the fact that Z is a ring from the properties
of addition and multiplication of natural numbers.

. Let R be a ring. The set of all formal power series p(t) = a0 + ait + axt> + -, with

a; € R, forms a ring which is usually denoted by R[[t]). (By formal power series we
mean that there is no requirement of convergence.)

(a) Prove that the formal power series form a ring.

(b) Prove that a power series p(t) is invertible if and only if ao is a unit of R.

Prove that the units of the polynomial ring R[x] are the nonzero constant polynomials.

3. Homomorphisms and Ideals

1. |Show that the inverse of a ring isomorphism ¢: R—— R’ is an isomorphism.
2. |Prove or disprove: If an ideal I contains a unit, then it is the unit ideal.
3. JFor which integers n does x*> + x + 1 divide x* + 3x® + x> + 6x + 10in Z/nZ[x]?
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n

11.

.| Prove that in the ring Z[x], (2) N (x) = (2x).
.| Prove the equivalence of the two definitions (3.11) and (3.12) of an ideal.
.|Is the set of polynomials a,x" + a,—x""' + - + a\x + ao such that 2**! divides ax

an ideal in Z[x]?

.| Prove that every nonzero ideal in the ring of Gauss integers contains a nonzero integer.
.| Describe the kemel of the following maps.

(@) R[x,y]— R defined by f(x, y) »=£(0,0)
(b) R[x]—— C defomed by f(x) »ww>f(2 + i)

.| Describe the kernel of the map Z[x]— R defined by flx) mwwA1 + V2).
10.

Describe the kernel of the homomorphism ¢: Clx, y, z]— C[¢] defined by ¢ (x) = ¢,
e(y) = 1% ¢(2) = 1.

(@) Prove that the kernel of the homomorphism ¢: C[x,y]—— C[t] defined by

12,
13.
14.

15.

16.

17.

18.

19.

20.
21.
22,
23.

xawws 12 yamaas 13 g the principal ideal generated by the polynomial y* — x°.
(b) Determine the image of ¢ explicitly.
Prove the existence of the homomorphism (3.8).
State and prove an analogue of (3.8) when R is replaced by an arbitrary infinite field.
Prove that if two rings R, R’ are isomorphic, so are the polynomial rings R[x] and
R'[x].
Let R be a ring, and let f(y) € R|y] be a polynomial in one variable with coefficients in
R. Prove that the map R[x, y]—> R[x, y] defined by xmw>x + £(y), ymw>y is an au-
tomorphism of R[x, y].
Prove that a polynomial f(x) = Za;x' can be expanded in powers of x — a:
f(x) = Zci(x — a)', and that the coefficients ¢; are polynomials in the coefficients a;,
with integer coefficients.
Let R, R’ be rings, and let R X R’ be their product. Which of the following maps are
ring homomorphisms?
(@ R——> R XR', rr~w»ws(r,0)
(b) R——>RXR, raws(r,r)
() RXR'—>R, (r;,n)»r,
(d) RXR——R, (ri,n)~»wrn
(€ RXR——R, (ri,r2)mwsr +
(@) Is Z/(10) isomorphic to Z/(2) X Z/(5)?
(b) Is Z/(8) isomorphic to Z/(2) X Z/(4)?
Let R be a ring of characteristic p. Prove that the map R—— R defined by x~»w>xP is a
ring homomorphism. This map is called the Frobenius homomorphism.
Determine all automorphisms of the ring Z[x].
Prove that the map Z——> R (3.9) is compatible with multiplication of positive integers.
Prove that the characteristic of a field is either zero or a prime integer.
Let R be a ring of characteristic p. Prove that if a is nilpotent then 1 + a is unipotent,
that is, some power of 1 + ais equal to 1.
(a) The nilradical N of a ring R is the set of its nilpotent elements. Prove that N is an
ideal.
(b) Determine the nilradicals of the rings Z/(12), Z/(n), and Z.
(a) Prove Corollary (3.20).
(b) Prove Corollary (3.22).
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26.
27.
*28.

29.

30.

31.
*32.

33.
.

4.

Determine all ideals of the ring R[[]] of formal power series with real coefficients.

Find an ideal in the polynomial ring F[x, y] in two variables which is not principal.

Let R be a ring, and let / be an ideal of the polynomial ring R[x]. Suppose that the lowest

degree of a nonzero element of I is n and that I contains a monic polynomial of degree n.

Prove that I is a principal ideal.

Let I,J be ideals of a ring R. Shmgef)ty example that / U J need not be an ideal, but

showthat! + J ={r ER|r=x+y, withx € I,y € J}is an ideal. This ideal is

called the sum of the ideals I, J.

(a) Let I, J be ideals of a ring R. Prove that/ M J is an ideal.

(b) Show by example that the set of products {xy | x € I,y € J} need not be an ideal,
but that the set of finite sums 2 x, y, of products of elements of 7 and J is an ideal.
This ideal is called the product ideal.

(¢) ProvethatlJ C I N J.

(d) Show by example that IJ and I N J need not be equal.

LetI,J,J' beideals in aring R. Isit true that I(J + J') =17 + [J'?
If R is a noncommutative ring, the definition of an ideal is a set I which is closed under

addition and such that if r € R and x € I, then both rx and xr are in /. Show that the

noncommutative ring of n X n real matrices has no proper ideal.

Prove or disprove: If a® = a for all @ in a ring R, then R has characteristic 2.

An element e of a ring S is called idempotent if e* = e. Note that in a product R X R’ of

rings, the element e = (1,0) is idempotent. The object of this exercise is to prove a

converse.

(a) Prove that if ¢ is idempotent, then e’ = 1 — e is also idempotent.

(b) Let e be an idempotent element of a ring S. Prove that the principal ideal &S is a
ring, with identity element e. It will probably not be a subring of § because it will
not contain 1 unless e = 1.

(c) Let e be idempotent, and let ¢’ = 1 — e. Prove that § is isomorphic to the product
ring (eS) X (¢'S).

Quotient Rings and Relations in a Ring

Prove that the image of the homomorphism ¢ of Proposition (4.9) is the subring de-
scribed in the proposition.
Determine the structure of the ring Z[x]/(x* + 3, p), where (a) p = 3, (b) p = 5.

Describe each of the following rings.
(@ Z[x]/x*—-3,2x +4) () Z[]/2 + i)

. Prove Proposition (4.2).

Let R’ be obtained from a ring R by introducing the relation &« = 0, and let y: R——> R’
be the canonical map. Prove the following universal property for this construction: Let
©: R—— R be aring homomorphism, and assume that ¢ () = 0 in R. There is a unique
homomorphism ¢’: R'—— R such that ¢’ ° ¢y = ¢.

Let I, J be ideals in a ring R. Prove that the residue of any element of / N Jin R/IJ is
nilpotent.

Let I, J be ideals of a ring R such that/ + J = R.

(@) Provethat I/ =1 N J.
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8.

*(b) Prove the Chinese Remainder Theorem: For any pair a, b of elements of R. there is
an element x such that x = a (modulo /) and x = b (modulo J). [The notation
x = a (modulo /) means x — a € 1.]
Let I, J be ideals of a ring R such that/ + J = R and IJ = 0.
{(a) Prove that R is isomorphic to the product (R/I) X (R/J).
{b) Describe the idempotents corresponding to this product decomposition (see exercise
34, Section 3).

5. Adjunction of Elements

1.

2.

11.

12.
13.

14.

15.

Describe the ring obtained from Z by adjoining an element « satisfying the two relations
20 —6=0anda — 10 =0.

Suppose we adjoin an element « to R satisfying the relation @® = 1. Prove that the re-
sulting ring is isomorphic to the product ring R X R, and find the element of R x R
which corresponds to «.

Describe the ring obtained from the preduct ring R X R by inverting the element (2, 0).

. Prove that the elements 1,1 —a,(t — a)’,...,(¢t — a)™ ' form a C-basis for

Cl)/(¢ — a)").

. Let a denote the residue of x in the ring R’ = Z[x]/(x* + x> + x* + x + 1). Compute

the expressions for (@’ + @ + a)(a@ + 1) and & in terms of the basis (1, a, &, &, a?).

. In each case, describe the ring obtained from [, by adjoining an element o satisfying the

given relation.
@a*+a+1=0 (b)a?+1=0

. Analyze the ring obtained from Z by adjoining an element « which satisfies the pair of

relations @®> + > + 1 = 0and a®? + a = 0.

. Let a € R. If we adjoin an element « with the relation « = a, we expect to get back a

ring isomorphic to R. Prove that this is so.

. Describe the ring obtained from Z/12Z by adjoining an inverse of 2.
10.

Determine the structure of the ring R’ obtained from Z by adjoining element « satisfy-

ing each set of relations.

(@ 2a=6,6a=15 (b) 20 =6,6a =18 (¢) 20 =6, 6a =8

LetR = Z/(10). Determine the structure of the ring obtained by adjoining an element o

satisfying each relation.

@2a—-6=0 (b)2a —5=0

Let a be a unit in a ring R. Describe the ring R’ = R[x]/(ax — 1).

(a) Prove that the ring obtained by inverting x in the polynomial ring R[x] is isomorphic
to the ring of Laurent polynomials, as asserted in (5.9).

(b) Do the formal Laurent series 2 anx" form a ring?

Let a be an element of a ring R, and let R’ = R[x]/(ax — 1) be the ring obtained by ad-
joining an inverse of a to R. Prove that the kernel of the map R—— R’ is the set of ele-
ments b € R such that a"b = 0 for some n > 0.

Let a be an element of a ring R, and let R’ be the ring obtained from R by adjoining an
inverse of a. Prove that R’ is the zero ring if and only if « is nilpotent.
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16.

17.
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Let F be a field. Prove that the rings F[x]/(x?) and F[x]/(x* — 1) are isomorphic if and
only if F has characteristic 2.

Let R = Z[x]/(2x). Prove that every element of R has a unique expression in the form
ay + ayx + -+ + anx", where a; are integers and a, ,..., an are either O or 1.

6. Integral Domains and Fraction Fields

it el

o o

*9.

Prove that a subring of an integral domain is an integral domain.

Prove that an integral domain with finitely many elements is a field.

Let R be an integral domain. Prove that the polynomial ring R[x] is an integral domain.
Let R be an integral domain. Prove that the invertible elements of the polynomial ring
R|[x] are the units in R.

Is there an integral domain containing exactly 10 elements?

Prove that the field of fractions of the formal power series ring F[[x]] over a field F is
obtained by inverting the single element x, and describe the elements of this field as cer-
tain power series with negative exponents.

. [Carry out the verification that the equivalence classes of fractions from an integral do-

main form a field.

A semigroup S is a set with an associative law of composition having an identity ele-
ment. Let § be a commutative semigroup which satisfies the cancellation law: ab = ac
implies b = ¢. Use fractions to prove that S can be embedded into a group.

A subset § of an integral domain R which is closed under multiplication and which does
not contain O is called a multiplicative set. Given a multiplicative set S, we define §-
fractions to be elements of the form a/b, where b € §. Show that the equivalence
classes of §-fractions form a ring,.

7. Maximal Ideals

. [Prove that the maximal ideals of the ring of integers are the principal ideals generated by

prime integers.

Determine the maximal ideals of each of the following.

@ RxR ) Rx)/x>) (¢ Rxl/(x*=3x+2) ) Rx)/(x>+ x+ 1)
Prove that the ideal (x + y%,y + x> + 2xy? + y*) in C[x, y] is a maximal ideal.

. Let R be a ring, and let 7 be an ideal of R. Let M be an ideal of R containing /, and let

M = M/I be the corresponding ideal of R. Prove that M is maximal if and only if M is.

. Let I be the principal ideal of C[x, y] generated by the polynomial y? + x* — 17. Which

of the following sets generate maximal ideals in the quotient ring R = Clx, y]/I?
@ G-Ly—4 (b)) x+1Ly+4 © (*-17,y%)
Prove that the ring Fs[x]/(x* + x + 1) is a field.

. [Prove that the ring F2[x]/(x* + x + 1) is a field, but that F;[x]/(x* + x + 1) is not a

field.

Let R = Clxi,..., x,)/1 be a quotient of a polynomial ring over C, and let M be a maxi-
mal ideal of R. Prove that R/M = C.

Define a bijective correspondence between maximal ideals of R[x] and points in the up-
per half plane.
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10.

11.

12.

*13.

14.

Let R be a ring, with M an ideal of R. Suppose that every element of R which is not in M
is a unit of R. Prove that M is a maximal ideal and that moreover it is the only maximal
ideal of R.

Let P be an ideal of a ring R. Prove that R = R/P is an integral domain if and only if
P # R,and thatif a,b € Randab € P, thena € P or b € P. (An ideal P satisfying
these conditions is called a prime ideal.)

Let ¢: R—— R’ be a ring homomorphism, and let P’ be a prime ideal of R'.

(a) Prove that ¢ '(P') is a prime ideal of R.

(b) Give an example in which P’ is a maximal ideal, but ¢ '(?’) is not maximal.

Let R be an integral domain with fraction field F, and let P be a prime ideal of R. Let R,
be the subset of F defined by

R, = {a/d|a,d € R,d &€ P}.
This subset is called the localization of R at P.

(@) Prove that R, is a subring of F.
(b) Determine all maximal ideals of Rp.

Find an example of a “ring without unit element” and an ideal not contained in a maxi-
mal ideal.

8. Algebraic Geometry

1.

Determine the points of intersection of the two complex plane curves in each of the
following.

@y —-x*+x*=1, x+y=1

(b) x2+xy+y*=1 x*+2y2=1

© y*=x% xy=1

dDx+y+y*=0, x—y+y*=0

@ x+y*=0, y+x*+2xy?+y*=0

. Prove that two quadratic polynomials f, g in two variables have at most four common ze-

ros, unless they have a nonconstant factor in common.

. Derive the Hilbert Nullstellensatz from its classical form (8.7).
. Let U, V be varieties in C". Prove that U U V and U N V are varieties.
.Let fi,....fr; &,...8 € Clx1,...,xn], and let U,V be the zeros of {fi,..., f},

{g1,..., gs} respectively. Prove that if U and V do not meet, then (fi,..., f+; &1,..-, &s) I8
the unit ideal.

Letf = fi-- fmand g = g -~ gn, where f;, g; are irreducible polynomials in Clx, y].
Let §; = {fi = 0} and T; = {g; = 0} be the Riemann surfaces defined by these polyno-
mials, and let V be the variety f = g = 0. Describe V in terms of S:, T}.

. Prove that the variety defined by a set {fi,..., f} of polynomials depends only on the

ideal (f,..., f) they generate.

Let R be a ring containing C as subring.

(a) Show how to make R into a vector space over C.

(b) Assume that R is a finite-dimensional vector space over C and that R contains ex-
actly one maximal ideal M. Prove that M is the nilradical of R, that is, that M con-
sists precisely of its nilpotent elements.

Prove that the complex conic xy = 1 is homeomorphic to the plane, with one point
deleted.
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10.
11.

12.

*13.

*14.

Prove that every variety in C? is the union of finitely many points and algebraic curves.

The three polynomials f; = x* + y* — 1, o= x> — y + 1, and ; = xy — | generate

the unit ideal in Clx, y]. Prove this in two ways: (i) by showing that they have no com-

mon zeros, and (ii) by writing 1 as a linear combination of f, f>, 5, with polynomial

coefficients.

{a) Determine the points of intersection of the algebraic curve S: y> = x* — x? and the
lineL: y = Ax.

(b) Parametrize the points of S as a function of A.

(c) Relate S to the complex A-plane, using this parametrization.

The radical of an ideal [ is the set of elements r € R such that some power of ris in 1.

(a) Prove that the radical of / is an ideal.

(b) Prove that the varieties defined by two sets of polynomials {f,,..., f;},{g1,..., gs}
are equal if and only if the two ideals (f1,..., f), (g1,-..., &) have the same radicals.

LetR = Clxi,..., xa)/(f1,..., fin). Let A be a ring containing C as subring. Find a bijec-

tive correspondence between the following sets:

(i) homomorphisms ¢: R——> A which restrict to the identity on C, and

(ii) n-tuples a = (ai,...,an) of elements of A which solve the system of equations
A= ..= fm =0, thatis, such that fi(a) = Ofori = 1,...,m

Miscellaneous Exercises

1.

6.

Let F be a field, and let X denote the vector space F2. Define multiplication by the rules

(al,ag) . (bl,bz) = (alb, - azbz,a1bz + azbl).

(a) Prove that this law and vector addition make K into a ring.

(b) Prove that X is a field if and only if there is no element in F whose square is —1.

{c) Assume that —1 is a square in F and that F does not have characteristic 2. Prove that
K is isomorphic to the product ring F X F.

(a) We can define the derivative of an arbitrary polynomial f(x) with coefficients in a
ring R by the calculus formula (@nx" + - + aix + @)’ = nanx™"' + -+ + la,.
The integer coefficients are interpreted in R using the homomorphism (3.9). Prove
the product formula (fg)' = f'g + fg' and the chain rule (fo g)' = (f' ° g)g’

(b) Let f(x) be a polynomial with coefficients in a field F, and let @ be an element of F,
Prove that « is a multiple root of fif and only if it is a common root of f and of its
derivative f'.

(©) Let F = Fs. Determine whether or not the following polynomials have multiple roots
in Frx'—x x%~2x3+ 1.

Let R be a set with two laws of composition satisfying all the ring axioms except the

commutative law for addition. Prove that this law holds by expanding the product

(@ + b)(c + d) in two ways using the distributive law.

Let R be a ring. Determine the units in the polynomial ring R [x].

Let R denote the set of sequences a = (ai, a», as,...) of real numbers which are eventu-
ally constant: ap = an+, = ... for sufficiently large n. Addition and multiplication are
component-wise; that is, addition is vector addition and ab = (a1b,, a:b»,...).

(@) Prove that R is a ring,.

(b) Determine the maximal ideals of R.

(a) Classify rings R which contain C and have dimension 2 as vector space over C.
*(b) Do the same as (a) for dimension 3.
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*7.

8.

10.

11.

12,

13.

14.

15.
*16.
*17.

Consider the map ¢: Clx,y]|— Clx]x Cly] x C[t] defined by f(x,y)mw>
(f(x,0), f(0, y), f(t,1)). Determine the image of ¢ explicitly.
Let § be a subring of a ring R. The conductor C of S in R is the set of elements « € R
such that aR C S.
(a) Prove that C is an ideal of R and also an ideal of S.
(b) Prove that C is the largest ideal of S which is also an ideal of R.
(¢) Determine the conductor in each of the following three cases:

i R =C[z], S=C[

i) R = Z[g], ¢{=4(-1+V=3), $=12Z[V-3};

(i) R = C[t, "], S = Cl1].
A line in C? is the locus of a linear equation L: {ax + by + ¢ = 0}. Prove that there is a
unique line through two points (xo, yo), (x1, 1), and also that there is a unique line
through a point (xo, yo) with a given tangent direction (o, o).
An algebraic curve C in C? is called irreducible if it is the locus of zeros of an irreducible
polynomial f (x, y)—one which can not be factored as a product of nonconstant polyno-
mials. A point p € C is called a singular point of the curve if df/ox = af/dy = 0 at p.
Otherwise p is a nonsingular point. Prove that an irreducible curve has only finitely
many singular points.
Let L: ax + by + ¢ = 0 be a line and C: {f = 0} a curve in C% Assume that b # 0.
Then we can use the equation of the line to eliminate y from the equation f(x,y) = 0 of
C, obtaining a polynomial g(x) in x. Show that its roots are the x-coordinates of the in-
tersection points.
With the notation as in the preceding problem, the multiplicity of intersection of L and C
at a point p = (xo, yo) is the multiplicity of x, as a root of g(x). The line is called a tan-
gent line to C at p if the multiplicity of intersection is at least 2. Show that if p is a non-
singular point of C, then there is a unique tangent line at (xo, yo), and compute it.
Show that if p is a singular point of a curve C, then the multiplicity of intersection of ev-
ery line through p is at least 2.
The degree of an irreducible curve C: {f = 0} is defined to be the degree of the irre-
ducible polynomial f.
(@) Prove that a line L meets C in at most d points, unless C = L.

*(b) Prove that there exist lines which meet C in precisely & points.

Determine the singular points of x* + y’ — 3xy = 0.
Prove that an irreducible cubic curve can have at most one singular point.
A nonsingular point p of a curve C is called a flex point if the tangent line L to C at p has
an intersection of multiplicity at least 3 with C at p.
(a) Prove that the flex points are the nonsingular points of C at which the Hessian

[ 0F  _8F  of]
dx?  oxdy ox
9 0* d
det / —-—f;_ 4
dxdy dy oy
aof  of
= = f
i ox dy

vanishes.
(b) Determine the flex points of the cubic curves y* — x* and y* — x* + x*
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*18. Let C be an irreducible cubic curve, and let L be a line joining two flex points of C.
Prove that if L meets C in a third point, then that point is also a flex.

19. Let U = {fi(x1,..., xm) = 0}, V. = {gi(y1,.... yn) = O} be two varieties. Show that the
variety defined by the equations {fi(x) = 0, gi(y) = 0} in C™*" is the product set U X V.
20. Prove that the locus y = sin x in R* doesn’t lie on any algebraic curve.

*21. Let f, g be polynomials in C[x,y] with no common factor. Prove that the ring R =
Clx, y)/(f, g) is a finite-dimensional vector space over C.
22. (a) Let s, ¢ denote the functions sin x, cos x on the real line. Prove that the ring R[s, c]
they generate is an integral domain.

(b) Let K = R(s, ¢) denote the field of fractions of R[s, ¢]. Prove that the field X is iso-
morphic to the field of rational functions R(x).

*23. Let f(x), g(x) be polynomials with coefficients in a ring R with f # 0. Prove that if the
product f(x)g(x) is zero, then there is a nonzero element ¢ € R such that cg(x) = 0.
*24. Let X denote the closed unit interval [0, 1], and let R be the ring of continuous functions
X—R.
(a) Prove that a function f which does not vanish at any point of X is invertible in R.
(b) Let fi,..., fn be functions with no common zero on X. Prove that the ideal generated
by these functions is the unit ideal. (Hint: Consider fi + - + f,2.)
(c) Establish a bijective correspondence between maxXimal ideals of R and points on the
interval,
(d) Prove that the maximal ideals containing a function f correspond to points of the in-
terval at which f = 0.
(e) Generalize these results to functions on an arbitrary compact set X in R¥.
(f) Describe the situation in the case X = R.



